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1. Introduction 

Recent studies have shown that the revived resonance theory successfully gives 
not only qualitative but also quantitative predictions on rr-electronic properties 
of benzenoid hydrocarbons [1-4]. In this theory the carbon atom skeletons of 
these molecules are often treated as "graphs" from the graph-theoretical stand- 
point. The advantage of these studies lies in their predictability of the electronic 
properties of infinitely large networks, where the numbers of "Kekul6 patterns" 
of graph G, K(G), and its subgraphs play a key role. Thus various methods have 
been proposed to enumerate and analyse these numbers [5-8]. 

On the other hand, the concept of "aromatic sextet" has been proposed by Clar 
from the experimental standpoint [9]. Many rr-electronic properties, e.g. relative 
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Fig. 1. Definition of aromatic sextet. Two aromatic sextets can mutually 
be resonant as in the right pattern 

stabilities, aromaticities, and reactivities of isomeric benzenoid hydrocarbons, are 
shown to be explained by this concept rather quantitatively [2-4, 10, 10a]. 

To analyse the mathematical features of the aromatic sextet, the sextet polynomial 
Be(x) has been proposed for a "polyhex graph" G representing a benzenoid 
hydrocarbon [11]. According to Clar, if a set of three conjugated double bonds 
are drawn in a hexagon for one of the Kekul6 patterns of the graph concerned, 
an aromatic sextet can be assigned to that hexagon [9]. Two or more aromatic 
sextets can be mutually resonant if the remainder of the graph has at least one 
Kekul6 pattern (Fig. 1). Let  us define the resonant sextet number, r(G, k), as 
the number of ways in which k resonant aromatic sextets can be chosen from 
G. With a set of r(G, k)'s the sextet polynomial Be(x) is defined as follows: 

m a x  

Be(x) = Y~ r(a, k)x k, (1) 
k = 0  

where x is simply a parameter to hold k. Define r(G, 0) = 1 for any G, and we 
get B~(x) = 1 for a vacant graph 4,. 

It has been shown that the following two interesting relations hold for the sextet 
polynomial [11]: 

B e ( l )  = K ( G ) ,  (2) 

a l l  

B~ (1) = ~ K ( G -  (r~)), (3) 
i 

where B'~(x) is the first derivative of Be(x), and G-(ri)  [12] is the subgraph 
of G obtained from G by deleting the hexagon ri and all its adjacent edges. Eq. 
(2) means that the counting up of all the sextet patterns of G is equivalent to 
the enumeration of the number of Kekul6 patterns of G. It is clear that the value 
of the right hand side of Eq. (3) is equal to the value of Y~ 71 proposed by Herndon 
and Ellzey [2], which is the number of resonance interactions among the Kekul6 
patterns as shown below. 

Thus we can show that through the sextet polynomial many quantities in resonance 
theory are mathematically correlated with one another. 

Although several recurrence relations for the sextet polynomial are known, most 
of the investigations reported so far are concerned only with "catafusenes" 
[13-16]. It is very tedious to get the sextet polynomial even for moderately large 
"perifusenes" [13], and further in many cases we should consider the correction 
terms arising from the "super sextets" in order to keep Eqs. (2) and (3) valid [17]. 
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In this paper, the recursive method to get the sextet polynomial for any polyhex 
graph G has been proposed, and for some infinitely large networks general 
expressions for their sextet polynomials are obtained and discussed, through 
which the mathematical meaning of the "super sextet" was made clear. Further,  
systematic understanding was obtained for the relation between the topological 
structure of polyhex graphs and the maximum number of resonant sextets. 

2. Definitions and notations 

In this paper only the polycyclic benzenoid hydrocarbons are concerned. The 
carbon atom skeletons of these molecules are expressed by polyhex graphs. 
Discussions are limited to those polyhex graphs which have at least one Kekul6 
structure, or Kekul6 pattern, in which all the component points belong to one 
and only one double bond spanning a pair of adjacent points; the number of 
points of the graph being even. As has been proposed in Ref. [17], let us draw 
all the polyhex graphs on a plane so that a pair of edges of each hexagon lie in 
parallel with the vertical line. It will be clear that this simplifies the later discussions 
without loss of generality. 

The following are the necessary definitions and notations. Sextet pattern: If for 
a given Kekul6 pattern a set of three conjugated double bonds are assigned on 
a hexagon, one can draw a circle representing an aromatic sextet in that hexagon. 
Once an aromatic sextet is drawn on a certain hexagon, no aromatic sextet is 
allowed to be drawn in the neighbouring hexagons [9]. As mentioned above, one 
can draw more than two resonant sextets as long as at least one Kekul6 pattern 
is drawn for the remainder of the molecule [9, 17]. A sextet pattern is a pattern 
derived from a Kekul6 pattern by transforming certain sets of aromatic sextets 
into circles and by wiping out the remaining double bonds [17]. 
Fixed bond (edge): If a bond e of G is a single (or double) bond in all the Kekul6 
patterns of G, it is called as an s-fixed (or a d-fixed) bond. 
G - ( s ) :  A subgraph of G obtained by deleting s and all the edges which are 
adjacent to s (Fig. 2). 
G - I s ] :  A subgraph of G -  (s) obtained by deleting all the fixed bonds in G -  (s) 
(Fig. 2). 
Thin polyhex: A polyhex graph which does not contain a coronene skeleton. 

Fig. 2. Definitions of subgraphs G-(s)and G-[s] 

G ~ G-(s) 

c L 2  --, o 
G-Is] 
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Fig. 3. Definitions of proper and improper sextets 

Fat polyhex: A polyhex graph which includes at least one coronene skeleton. 
Proper  and improper sextets: If a set of three conjugated double bonds are 
arranged in a hexagon as shown in Fig. 3 for a given Kekul6 pattern, they are 
called as proper  and improper sextets respectively [17]. 

3. O n e - t o - o n e  correspondence  b e t w e e n  Kekul~  and sextet  patterns 

In Ref. [17] we have shown the one-to-one correspondence between Kekul6 and 
sextet patterns of thin polyhex graphs through the "Clar transformation." Con- 
sider a Kekul6 pattern ki for a given polyhex graph, such as pyrene (See Fig. 4). 
When we transform all the proper  sextets in ki into aromatic sextets and all the 
remaining double bonds into single bonds, we can get a sextet pattern si uniquely 
corresponding to ki (Clar transformation). Conversely, when we transform all 
the aromatic sextets in a given sextet pattern sj into proper sextets and draw the 
double bond(s) in the remaining subgraph so as to have no proper  sextet (it is 
always possible), we can uniquely get k i corresponding to sj (See Ref. [17] in 
detail). From this correspondence Eqs. (2) and (3) are proved for thin polyhex 
graphs. 

For fat polyhex graphs "super sextets" have been introduced to hold these 
equations (Fig. 5). Though we have not defined "super sextet" explicitly, we 
have found empirically the one-to-one correspondence between Kekul6 and 
sextet patterns including super sextets by considering a "super proper sextet" 

62, 

K(G) = 6 

r(G.O) = 1 

r ( G J )  -- 4 

r(G.2) = 1 

BG(x) = 1 + 4 x .  xZ 

BG(1 ) = 6 

Fig. 4. One-to-one correspondence between Kekul6 and 
sextet patterns 
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ix) 
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xiii) ~ X 2  xiv) ~ X 2  X4 ~ )(I 

Fig. 5. Super sextets and their contribution to the sextet polynomial. The super sextet is represented 
by concentric circles and bold edges. The shaded polyhex can be resonant with the super sextet giving 
the followinlz contributions: i) x(1 + 8x + 1 lx2+ 2x3), ii) x(1 + 8x+ 16x2+ 8x3), iii) x(1 + 10x+ 22x2+ 
12x3+x4), iv) x( l+5x+4x2) ,  v) x, vi)x2(l+2x), vii) x2(l+x), viii) x2(l+4x+2x2),  ix) x 2, x) 
x2( 1 + x) 2, xi) x2( 1 + x), xii) x3(1 + x), xiii) x ~, xiv) x 3, xv) x 3, xvi) x 4. The total correction to BG(x ) 
due to the super sextets can be obtained as 12x+96x2+ 168x3+60x4+2x 5 by adding these terms 
with weight given in the figure. The resultant Bo(x) is 1 +36x+306x2+996x3+ 1446x4+984xS+ 
303x6+42xT+2x s, which is identical to what is obtained from Eq. (24) with n = 4 

(Fig. 6). H e r e a f t e r  the  t e rm "sex te t  p a t t e r n "  may  include a super  sextet .  Then  
we p r o p o s e  the  fo l lowing Con jec tu re .  

Con jec tu re .  F o r  any po lyhex  g raph  G the re  exists o n e - t o - o n e  c o r r e s p o n d e n c e  
be tween  Keku l6  and sextet  pa t te rns .  

In the  next  sect ion this con j ec tu r e  plays a key  ro le  t oge the r  with the  fol lowing 
R e m a r k .  

R e m a r k .  If a hexagon  in a po lyhex  g raph  conta ins  at  least  one  fixed bond ,  ne i the r  
a p r o p e r  nor  an i m p r o p e r  sexte t  can be d rawn  in tha t  hexagon.  

This r e m a r k  is p roved  by the  fact tha t  any  p r o p e r  sexte t  can always be  t r ans fo rmed  
into an i m p r o p e r  sextet  leaving the  rest  of the  Keku l6  pa t t e rn  unchanged .  

4. Recurrence relations and general formulae of sextet polynomials 

W e  will show that  the  sexte t  po lynomia l  of a po lyhex  graph  can be ob t a ined  as 
the  sum of the  sextet  po lynomia l s  of smal le r  po lyhex  graphs.  By using this 
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X2 

X2 

X 

Fig. 6. One-to-one correspondence between Kekul6 (right) 
and sextet (left) patterns containing a super sextet. In the 
Kekul6 patterns the proper super sextets are marked with 
"solid" double bonds. Note the characteristic feature of the 
arrangement of the double bonds in the proper super sextet 
in phase with that of the proper sextet. The contribution of 
each pattern to the sextet polynomial is given below the 
arrows 

recurs ive  me thod ,  genera l  express ions  of sexte t  po lynomia l s  for  severa l  specific 
ne tworks  can be  ob t a ined  as follows. 

4.1. The parallelogram system Pm,n 

Firs t  we will cons ider  the  pa ra l l e log ram system cons t ruc ted  f rom m • n hexagons  
as shown in Char t .  Le t  us d e n o t e  this g raph  as Pm,n and its sextet  po lynomia l  as 
Pm,n(x). F u r t h e r ,  each hexagon  in P, , , ,  is d e n o t e d  as ri,j(i = 1, 2 , . . . ,  m, j =  
1, 2 . . . . .  n) as in Char t .  

The  PI,~ series is known  as the  polyacene .  The  genera l  express ion  of its sextet  
po lynomia l  has a l r eady  been  o b t a i n e d  as 

P l ,~(x)  = 1 + nx[15].  (4) 

Obvious ly ,  P l ,~(x)  = P~,l(x).  

In  the  case of m = 2, we can d iv ide  the  set of the  Keku l6  pa t t e rns  of P2,~, {k}, 
into the  fol lowing th ree  dis t inct ive subsets  (Fig. 7). {kA}: The  subset  of {k} in 
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B3.n 

Pm,n Rm,n 

C3,n 

A5, n B5, n C 5,n 

Chart. 
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which the left vertical bond of r m, eo, is double, {kB}: the subset of {k} in which 
eo is single and the right vertical bond of r~,l, et, is double, and {kc}: the subset 
of {k} in which both e0 and el are single. Consider first the sextet patterns 
corresponding to the Kekul6 patterns in {kA}. In those Kekul6 patterns rl,1 cannot 
be a proper  sextet because eo is fixed to be a double bond, and r2,1 cannot also 
be a proper  sextet because it has fixed bonds (i.e., f rom Remark) .  Then the sextet 
patterns derived from the Kekul6 patterns in {ka} have a one- to-one correspon- 
dence with those of Pe,,-~ (Fig. 7). On the other hand all the sextet patterns 
corresponding to the Kekul6 patterns in {kn} have a proper  sextet in r m,  whereas 
r~,i (i = 2, 3 . . . . .  n) and r2,~ cannot be a proper  sextet f rom Remark .  Then the 
sextet patterns derived f rom {kR} have an aromatic sextet in rt,~ and have a 
one- to-one  correspondence with those of P1,,-1. In the third subset {kc}, all the 

r t , t  

{kBl ~ / ,  ? ' [ ~  {SB} X Pl, n_l(x)P2,n(X,) 

=X 

Fig. 7. Subsets of Kekul6 patterns and the corresponding sextet patterns derived from the recursive 
process. See Eq. (5) 
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bonds are fixed by the first condition, and the sextet pattern corresponding to 
that Kekul6 pattern has only one proper  sextet on r2,1. So we can get the recurrence 
relation of P2,n(X) a s  

P2,. (x) = P2,.-a(x) + xPl,,,-x(x) + x. (5) 

Note in the second term of the right hand side P l . . - l (x )  is multiplied by x 
representing the aromatic sextet on r1,1. By a successive application of this 
recurrence relation down to the initial condition, Pz,l(X)= 1 +2x,  and from Eq. 
(4), we get the general formula 

P2 n(X) = 1 + 2nx + n ( n -  1) x2 
" 2 

2 n 2 
= 1 + ( 1 ) ( 1 ) x + ( 2 ) ( 2 ) x Z .  (6) 

In the case of m = 3, we can get the sextet polynomial, P3,.(x), by a similar way 
to P2,.(x). In this case we divide the whole set of the Kekul6 patterns, {k}, into 
four subsets as follows: If we divide {k} into three subsets as in the case of P2.., 
we obtain the three subsets {kA}, {kB}, and {kc} as shown in Fig. 8a. From 
Conjecture there exist three subsets of the sextet patterns {SA}, {SB}, and {Sc} 
corresponding to {kA}, {ko}, and {kc}, respectively. As in the case of P2..(x) the 
sextet polynomial corresponding to the subsets {kA} and {kB} is expressed as 
P3,n_l (X)+XPz ,n_ l (X) .  In {kc} a proper  sextet cannot be placed on r~,i ( i =  
1, 2 . . . .  , n) nor r2,i (i = 2, 3 . . . . .  n). Contrary to the case of Pz, .(x) a proper  
sextet may or may not be placed on r2,1, since the right vertical bond e2 of r2,1 
is not a d-fixed bond in {kc}. Thus we further divide {kc} into two subsets 
depending that e 2 is double or single as shown in Fig. 8b. These subsets contribute 
XPl,,,_a(x) and x, respectively, to P3,.(x). Consequently, the recurrence relation 
of P3,.(x) is expressed as 

P3,. (x) = P3m-1 (X) + xP2.n_l(X ) + XPl,n_l(X ) + x, (7) 

(a) 

JScJ---->~r ~ 
(b) 

Fig. 8. Successive branching of the recurrence relation. See Eqs. (7) and (9) 
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and using the same method as in P2,n(x) we get the following general formula: 

n 3 
P3,n (x) = 1 + ( ~ ) ( 1 ) x + ( 2 ) ( 2 ) x 2 + { 3 ~ ( n ~ x 3  \ 3 ] \ 3 , /  " (8) 

Similarly we can obtain the general recurrence relation as follows: 

rn - -1  

P,,,,,,(x)=Pm,,,-I(x)+x Y~ Pi.,,-l(x), (9) 
i = 0  

where we define Po..(x) = 1. And the general expression is obtained as 

em,,(x) = x ,  (m <_ n) (10) 
i=o i 

which can be proved by induction. 

From Eqs. (2) and (10), the number  of the Kekul6 patterns of P.,.. is given by 

~ ( m l ( n l =  ~ ( m l (  n /=(ram +n) (m<--n). (11) 
P " ~ ( 1 ) = i = o \ i / \ i /  i = o k i / \ m - i /  

4.2. Rm,n (See Chart) 

This system can be treated as m polyacenes being joined by ( n - 1 )  rows of 
s-fixed bonds. Then, 

Rm,n(x)=(l+nx) ", (12) 

Rm..(1) = (1+  n) m . (13) 

4.3. B3,n (See Chart) 

The recurrence relation can be obtained by using the formula for Rz,,. 

B3..(x) = R2,. (x) + xRz.n_l(x ) + xRz,n_z(X) + " " �9 + xRza(X) + x 

n - 1  

=(l+nx)Z+x  ~ ( l + k x )  2 
k = 0  

= 1 + 3nx + n(2n - 1)xZ-~ n(n - 1 ) ( 2 n -  1)x3 ' 
6 

(14) 
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and 

(n + 1)(n + 2)(2n + 3) (15) 
B3,.(1) - 6 

4.4. C3,. (See CharO 

Using the formula for B3,. series, we can obtain the general expression of C3,.(x) 
as follows: 

C3,.(x) = B3,.(x) + x(B3,.-l(x) + B3..-z(x) + �9 �9 �9 + B3a(x) + 1) 

n - - 1  

=B3, . (x)+x ~ B3,k(x) 
k = 0  

1 + 4 n x 4  n ( 7 n - 5 )  = xZ+ n(n - 1)2x3 + 
2 12 

where B3,o(X)= 1, and 

(n + 1)(n + 2)Z(n + 3) 
C3,n(1) = 12 

n(n-1 )Z(n -2 )x4 ,  (16) 

(17) 

4.5. C5,. (See Chart) 

In this large system, the recurrence relation is obtained by using those of two 
other systems, As,. and Bs,. (See Chart), in the same way as 4.2.-4.4. 

n - 1  

Cs, . (x)=Bs, . (x)+x Y~ Bs,,(x), (18) 
i = 0  

n - 1  

Bs , . ( x )=As , . ( x )+x  Y As,i(x). (19) 
i=o 

The general expressions for As,. and Bs.. are obtained as follows [18]: 

As, . (x)  = 1 + 7nx + 3 n ( 5 n -  2)x2+ n(41 n 2 -  51 n + 13) x3 
3 

+ n(n - 1)(75n 2 - 1 0 3 n  + 32) x4 

12 

+ n(n - 1)(89n3-251n2+214n - 76)xS 

60 
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n ( n  - 1)(n - 2)(21 n 3 -  5 2 n  2 + 47n  - 20)X 6 

120 

n ( n -  1)3(n - 2)(n  2 -  2n + 2) x7 ' 

120 
(20) 

(n + 1)(n + 2)3(n + 3)(n 2 + 4n + 5) 
As,,,(1) - 

120 
(21) 

Bs,n(x) = 1 + 8 n x  -~ 
n ( 3 7 n -  19) 

2 6 
X2~ n( 1 1 2 n 2 -  1 6 5 n + 5 9 ) x  3 

n ( n - 1 ) ( 2 9 n 2 - 5 3 n + 2 3 )  4 
x 

-~ n ( n -  1)(82n 3 -  2 9 3 n 2 +  3 3 7 n -  128) xS 

30 

-~ n ( n -  1 ) ( n - 2 ) ( 1 5 2 n 3 - 5 6 4 n 2 + 6 7 9 n - 2 8 5 ) x  6 

360 

+ n ( n  - 1)(n - 2 ) (12n  4 -  74n 3 + 168n 2 -  163n + 63) x7 

360 

n ( n  - 1)2(n - 2)2(n - 3) (3n 2 -  9n + 8) x8 ' 
-~ (22) 

2880 

(n + 1)(n + 2)2(n + 3)2(n + 4 ) (3n  2 + 15n + 20) 
B5,.(1) = (23) 

2880 

Af te r  r a the r  compl ica ted  calculat ions we can get the following general  expression.  

C5,,  (x )  = 1 + 9 n x  + 
9 n ( 5 n  - 3)x 2 -.I- n ( 1 4 9 n 2 -  249n  + 106)x 3 

2 6 

n ( n  - 1)2(86n - 103) x4.. + n ( n  - 1)2(28n 2 -  89n + 72) x5 

6 6 

n ( n  - 1)(n - 2 ) (316n  3 - 1 4 6 4 n 2  + 2 2 0 1 n -  1059)x 6 

360 

+ n ( n  - 1)(n - 2) (236n  4 -  1784n 3 + 4921 n 2 - -  5749n + 2430) X7 
2520 

+ n ( n  - 1)(n - 2) (n  - 3 ) (105n  4 - 838n  3 + 2427n  2 -  2918n  + 1272) 8 
x 

20160 

+ n ( n -  1 ) 2 ( n -  2 ) 3 ( n -  3 ) 2 ( n - 4 )  x9 (24) 

8640 
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This equation gives the correct sextet polynomial of the polyhex graph in Fig. 
5. And the number of Kekul6 patterns of Cs.n is expressed by the following 
simple form: 

(n + 1)(n + 2)2(n + 3)3(n + 4)2(n + 5) (25) 
C5.,(1) = 8640 

Note that the denominators of the right hand sides of Eqs. (17) and (25) are 
factored, respectively, as 1.22. 3 and 1.22. 33. 42. 5, and thus one can expect the 
next series 

(n + 1)(n + 2)2(n + 3)3(n + 4)4(n + 5)3(n + 6)2(n + 7) 
CT'n(1) = 1" 22. 3 3. 4 4. 5 3. 62. 7 (26) 

and so on. These expressions are shown to be identical to the results obtained 
by Woodger [19] for a more general case as 

Cm,,(1) = k=(~]+l)/2 ( n +n k) /('nk-~=i/2 ( n +n k ). (27) 

In these large systems containing super sextets, the expressions of Be(1) ' s  as 
functions of n are found to be identical to what were obtained by other methods 
[5, 6, 8]. This suggests that the conjecture we have proposed without rigorous 
proof is generally valid. Further the concept of the supersextet can be well 
extended to the "enlarged aromatic sextet" in necklace-like benzenoid hydrocar- 
bons such as kekulene [17], where a super proper  sextet is modified to an 
"enlarged proper sextet". 

The recursive method exemplified above may be formulated as follows: 
1) For a given polyhex graph G choose a row of hexagons as the {rn, lln = 
1, 2, .  �9 �9 m} hexagons in the case of I'm,, series. 
2) Denote the series of vertical lines in {r,,1} consecutively as {enln=0, 1, 
2 , . . .  m}. 
3) Fix e0 to be double and enumerate the Be(x) for G- [e0 ] .  Put k = 1. 
4) Fix {e~ln = O, 1, 2 .... k-1} to be single but ek double, and enumerate Be(x) 
for G--[rk,1] which should be multiplied by x corresponding to the fixed proper 
sextet on rk,~. GO to 3) until k = m [20]. 
5) The recurrence formula of Be(x) for the given graph G is the sum of all the 
terms obtained in 3) and 4). 

We should note here that the one-to-one correspondence between the Kekul6 
and sextet patterns is also obtained alternatively by transforming the improper 
sextets into aromatic sextets [17]. Then we can get the same recurrence relation 
by dividing the Kekul6 patterns according to this alternative criterion (Fig. 9). 

In Table 1 are given the recurrence relations of the sextet polynomials obtained 
for several typical series of graphs. In deriving these results we used the newly 
proposed operator  technique for obtaining effectively the recurrence relations 
[21]. The advantage of the sextet polynomial is not only in obtaining the number 
of the Kekul6 patterns easily but also in getting useful information on the aromatic 
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= ( 1 . 5 x . 3 x 2 1  ,, x ( l +  4x+  x 2) 

1 § 6 x .  7x2 + x3 

( ! ,, 4x ,, 3x2 .x3)  + x ( 1 . 4 x  +3x2 . x 3 ) .  x ( 1 . x )  

1 . 6 x .  Bx2 , , 4 x 3 §  4 

165 

= ( 1 . 4 x , ,  x 2 ) .  x(1, ,  4X ,, X 2 ) .  x ( 1 . 2 x  ) 

= 1 . 6 x  +7x2 . x 3  

= (1 ,, 5 x  ,, l . x2  ,, x3 )  �9 x (1 ,, 4 x  ,, 3x2  ,, x3 )  

= 1 . 6 x .  S x 2 . 4 x 3 + x  4 

Fig. 9. Examples showing that the alternative choices of (a) proper and (b) improper sextets give 
the identical sextet polynomials 

character of these molecules. For example, the over-all-index of aromaticity 
(OIA)  proposed by Randid [22] and Aihara [10] can readily be obtained by the 
following relation 

O I A  = 2 B b  (1 ) /Bo  (1). (28) 

The general forms of O I A  of several series of polyhex graphs are given in Table 
2. These expressions are especially valuable for analysing the topological aspects 
of the aromaticity of infinitely large polyhex networks. 

5. M a x i m u m  number  of aromat ic  sextets  

Deduced from a huge number  of experimental  data Clar postulated that the 
�9 r-electronic properties of the ground state of a benzenoid hydrocarbon are well 
represented by a so-called Clar structure (or pattern) in which the maximum 
number  of mutually resonant aromatic sextets are drawn [9]. It it is possible to 
draw two or more such patterns for a molecule, the set of those aromatic sextets 
are thought to migrate over the part or whole of the molecule (Fig. 10). Local 
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Table la .  Recursion formulae and m/N values for some series of polyhexes 

m 
Series Recursion Formula N 

W ( ~ ~  Wn(x) = W._ l (x )+xWn_2(x )  [(n+ 1)/2]n 

n 
D . ( x )  = (1 + x)D,~_ 1 (x) + xD._2(x)  - X2Dn_3(x) 2n 

V Vn(x)=(l+x)V._l(x)+(2x+x2)V,,_2(x) n_ 
3n 

- -X  2 V t l _ 3 ( X )  - -  X 3 V n - 4 ( x )  

En(X)=(I+4x+x2)E,~_1(X)__x2En_2(x) 2__nn 
4n 

F,, (x) = (1 + 2x)F,~_ 1 (x) + x(1 - x)Fn_2(x) 
n + l  

3n+1 

O 

Q 

O,~(x) = (1 + x)On_l(x)  + xO,~_2( x) - x20,~_3(x) - -  
2 n  

4 n - 2  

3 n + l  
O n ( x ) = ( l  + 5x + 3x2 + x3 )On- l (X ) -  x2On-2(x) 5 n + l  
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Table l b .  T h e  sextet polynomials for the lower members of the series of graphs in  

Table l a  

1 6 7  

W l ( x ) =  l + x  E I ( x  ) =  l + 4 x + x  2 

W 2 ( x )  = 1 + 2 x  E 2 ( x )  = 1 + 8 x  + 1 7 x  2 + 8 x  3 + x 4 

D l ( x ) =  l + 2 x  F l ( x ) =  l + 4 x  + x 2 

D 2 ( x )  = 1 + 4 x  + x ~ F 2 ( x )  = 1 + 7 x  + 9 x  2 + x 3 

D z ( x )  = 1 + 6 x  + 6 x  2 + x 3 

Vx(x). = l + 3 x  

V 2 ( x )  = 1 + 6 x  + 3 x  2 

V 3 ( x ) = l + 9 x + 1 5 x 2 + 5 x  3 

V4(x)  = 1 + 1 2 x +  3 6 x 2 + 2 8 x 3 + 8 x 4  

Q l ( x )  = 1 + 6 x + 8 x 2 + 4 x 3 + x  4 

O2(x)  = 

0 1 ( x )  = 1 + x 

O 2 ( x )  = 1 + 2 x  + x 2 

O3(x)  = 1 + 4 x  + 3x  2 + x 3 

l + l l x + 4 0 x a + 6 2 x 3 + 5 1 x 4 + 2 5 x S +  7 x 6 + x  7 

Note that Wo(x  ) = Do(x  ) = Vo(x  ) = E o ( x  ) = Fo(x  ) = Oo(x  ) = 1, b u t  Qo(x)  = 1 + x. 

aromaticity of these molecules is thus expressed by the Clar pattern. Recently 
one of the present authors has shown that partial ~r-electron density maps of 
aromatic hydrocarbons well represent the local aromaticity of the molecule, 
supporting the Clar's postulate [23, 24]. It is worth while discussing the topological 
dependency of the maximum number of resonant aromatic sextets representing 
the Clar's pattern. 

The maximum number m of the resonant aromatic sextets is, by definition, equal 
to the power of the last term of the sextet polynomial. The series of polyhex 
graphs studied here are classified into two depending that rn stays constant or 
increases with N, the number of hexagons. Let us call the former class as 1-type 
(after linear acenes), while the latter as z-type (zigzag). As N goes to infinity, 
the ratio of m / N  converges to zero and non-zero values, respectively, for 1- and 
z-types, indicating the difference in the stability of large ~'-electronic systems. 
The convergence limit of m / N  for the z-type varies from series to series as shown 

Fig. 10. Migration of aromatic sextets over a molecule 
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T a b l e  2. The formulae of OIA ' s  as a function of n 
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em,n 

Rm, n 

n3,n 

C3,n 

As,n 

Bs,n 

c~,. 

( m ; n )  ( m + m n - 1 )  2mn 
Pm n(1) = P ' , n ( 1 )  = m O I A =  

' m+n 

mn 
R,,,..(1) = (1+  n ) "  R,~.,.(1)=mn(l+n) m-1 O I A =  

l + n  

(n + 1)(n + 2)(2n + 3) 6n 
B3'n(1) 6 O I A =  n + 2  

n(n + 1)(2n + 3) 
B~.. ( 1 ) -  2 

(n + 1)(n + 2)2(n + 3) 8n 
C3'"(1) 12 O I A = n + 3  

n(n + 1)(n + 2) 2 
C~,. (1) - 3 

(n+ l)(n+ 2)3(n+ 3)(nZ +4n+ 5) 
As, . (1  ) = 

120 

n(n + 1)(n + 2)(n + 3)(7n 3 + 35n 2 + 60n + 38) 
A~,n(1) = 120 

2n(7n  3 + 35n 2 + 60n + 38) 
OIA 

(n + 2)2(n + 4 n  + 5) 

(n + 1)(n + 2)2(n + 3)2(n + 4)(3n 2 + 15n + 20) 
B5'"(1) - 2880 

n(n + 1)(n + 2)(n + 3)(n 4 + 10n 3 + 37n 2 + 60n + 37) 
B~,n (1 )=  120 

4 8 n ( n a +  10n3+37n2+60n +37)  
OIA  - 

(n + 2)(n + 3)(n + 4)( 3n2 +15n + 20) 

(n + 1)(n + 2)2(n + 3)3(n + 4)2(n + 5) 
C5'" (1) - 8640 

n(n + 1)(n + 2 ) ( n  + 3 ) ( n  + 4)(21 n4 + 252n3+  ll15n2+2136n + 1516) 

C~,. ( 1 ) -  20160 

6n(21 n 4 + 252n 3 + 1115n  2 + 2136n + 1516) 
OIA - 

7(n+ 2)(n+ 3)2(n+4)(n+ 5) 

in Table 1, among which the so-called "fully benzenoid" hydrocarbons have the 
largest value of 3, again supporting the Clar's intuition. The series of all the rest 
polyhexes, A, B, C, P, and R have the zero limiting value for m/N. As the last 
example of this 1-type the result of the following series of graphs Hj.k,l (]--< k-< l) 
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fully benzenoid 
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stable 

Fig. 11. Illustrative examples of the topological dependence of the maximum number rn of resonant 
sextets. Note that stability and the value m for various "3-row polyhexes" increase as the direction 
of the vertical arrow up to the "fully benzenoid" hydrocarbons 

will be given as 

rn H ~ (  j ,~,~)=jk/(jk+kl+lj-j-k-l+l) (l>-j+k-1) (29) 

= j k -  Y~ [(j+k-l)/2] ( j k + k l + l j - j - k - l + l )  
i = l  

( l<j+k-1) .  (30) 

These informat ions  are useful for discussing the topological origin of the relative 

stabili ty of these polyhex molecules  as exemplified in Fig. 11, where  the n u m b e r  
of the resonan t  sextets in the Clar  pa t te rn  represents  the order  of the stability 

reasonably  well [25]. This l ine of analysis can be fur ther  extended by the supple-  
men ta l  combina t ion  of the results ob ta ined  with the molecular  orbi tal  methods  
[26] and  o ther  graph- theore t ica l  considerat ions  [23-28] .  
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